Supplying clean power is easier than storing it

Cutting emissions relies on energy-storage technology coming of age

It sounds simple:  lift heavy blocks with a crane, then capture the power generated from dropping them. This is not an experiment designed by a ten-year-old, but the premise of Energy Vault, which has raised $110m from SoftBank, a big Japanese tech investor. The idea has competition. A cluster of billionaires including Bill Gates, Jack Ma, Ray Dalio and SoftBank’s Masayoshi Son are backing other schemes to capture power. A firm incubated at Alphabet, Google’s parent company, wants to store electricity in molten salt. Such plans hint at one of the power business’s hardest tasks. Generating clean power is now relatively straightforward. Storing it is far trickier.

Solar and wind last year produced 7% of the world’s electricity. By 2040, that share could grow by over five times, according to the International Energy Agency, an intergovernmental forecaster. The trouble is, a lull in the wind leaves a turbine listless. Clouds have a habit of blocking the sun. That means that solar and wind cannot, on their own, replace coal and gas plants, which produce continual power reliably.

One answer is to store power in batteries, which promise to gather clean electricity when the sun and wind produce more than is required and dispatch it later, as it is needed. In 2018 some 3.5 gigawatts of storage was installed, about twice the amount in 2017, according to Bloombergnef, an energy data firm. Total investment in storage this year may reach $5.3bn, it estimates. As this grows it could drive an extraordinary expansion (see chart). However at present only about 1% of renewable energy is complemented by storage, reckons Morgan Stanley, a bank. There are still plenty of hurdles to clear.

The most common method of storage so far has been to pump water into an elevated reservoir at times of plenty and release it when electricity is needed. This type of hydropower is not the answer to providing lots more storage. Building a new reservoir requires unusual topography and it can wreak environmental havoc.

Batteries offer an alternative and availability should improve as electric cars become ever more popular. “The whole production supply chain for lithium-ion batteries for electric vehicles is gearing up,” says Andrés Gluski of aes, an electricity company, “so we’re going to piggyback on that.” As greater demand led to greater manufacturing scale, the cost of batteries dropped by 85% from 2010 to 2018, according to Bloombergnef. That makes batteries cheap enough not only to propel mass-market electric cars but for use in the power system, too.

And as electric cars become more widespread their batteries could serve as a source of mobile storage, feeding power back into the grid, if required, when the vehicles are parked and plugged in. With the right infrastructure in place, fleets of electric cars could substitute for new dedicated storage capacity.

Batteries do a variety of things. A firm called Sunrun sells residential solar panels paired with batteries, a particularly appealing proposition for Californian homeowners desperate for an alternative to fire-induced blackouts. Within the broader grid, batteries can act as a shock absorber to deal with variations in supply from one minute to the next. Other uses include shifting electricity supply from the day, when solar panels often produce a surfeit of power, to the evening, when demand rises.

The growth of storage is becoming a headache for old-fashioned power generators that rely on gas or coal. NextEra Energy Resources, which builds clean-power installations, is increasingly pairing large solar farms with batteries. aes, which has battery-storage facilities in 21 countries and territories, runs a scheme in Hawaii that combines solar with storage to meet peaks in demand. The Rocky Mountain Institute, a clean-energy research group, warns that solar and battery projects, combined with measures such as smarter appliances to control demand, may turn gas-powered plants into stranded assets.

Nevertheless, the battery industry faces several barriers to broader deployment. To start with, if a battery overheats it can catch fire, producing gases that might explode. In the past year installations in South Korea have caught fire. A fire and explosion in April damaged a storage site in Arizona run by Fluence, a joint venture between aes and Siemens, a German engineering giant. The causes are still under investigation. As the industry matures, safety measures are likely to become more rigorous.

In the meantime, the industry will have to cope with a patchwork of other rules and regulations. South Korea has offered incentives for storage, in part to create a market for its domestic battery-makers, which are among the world’s leaders. Some states in America, such as New York and New Jersey, have mandated storage to help reduce emissions. In others, America’s federal electricity regulator is trying to open markets to storage, but the details of how that will work in practice are unclear. In Britain, batteries are deemed “generation assets”, which exposes storage developers to extra fees and costs, says Michael Folsom of Watson Farley & Williams, a law firm.

Even if electricity regulations were smoothed, lithium-ion batteries would eventually reach their limits. Breakthrough Energy Ventures (bev) is a fund backed by Messrs Gates, Ma, Dalio and other billionaires to invest in transformational technologies. The cost of lithium-ion batteries is falling quickly, but to store power for days let alone weeks “lithium-ion is never going to get cheap enough”, says Eric Toone, bev’s head of science.

Alternatives include flow batteries, that use electrolytes in tanks of chemical solution, as well as mechanical means such as Energy Vault’s falling blocks. Hydrogen can also be made using clean power and turned back into electricity in gas-fired power plants or fuel cells. In the future liquefied gases might provide a solution (see article). Unlike solar panels, which have become standardised, different batteries are likely to serve different purposes on a grid. “All batteries are like humans, equally flawed in some specific way,” says Mateo Jaramillo, who led storage development at Tesla, an electric carmaker.

Mr Jaramillo now leads Form Energy, a firm that is developing an electrochemical alternative to lithium-ion batteries. Investors include bev and Eni, an large Italian oil and gas firm. Mr Jaramillo declines to predict when his work will be commercialised. But the goal is clear. “If you can develop a long-term storage solution,” he says, “that’s how you retire coal and that’s how you retire natural gas.” SOURCE

An Energy Breakthrough Could Store Solar Power for Decades

 Researchers in Sweden have created a molecule that offers a way to trap heat from the sun.

relates to An Energy Breakthrough Could Store Solar Power for Decades
ILLUSTRATION: KHYLIN WOODROW FOR BLOOMBERG BUSINESSWEEK

For decades, scientists have sought an affordable and effective way of capturing, storing, and releasing solar energy. Researchers in Sweden say they have a solution that would allow the power of the sun’s rays to be used across a range of consumer applications—heating everything from homes to vehicles.

Scientists at Chalmers University of Technology in Gothenburg have figured out how to harness the energy and keep it in reserve so it can be released on demand in the form of heat—even decades after it was captured. The innovations include an energy-trapping molecule, a storage system that promises to outperform traditional batteries, at least when it comes to heating, and an energy-storing laminate coating that can be applied to windows and textiles. The breakthroughs, from a team led by researcher Kasper Moth-Poulsen, have garnered praise within the scientific community. Now comes the real test: whether Moth-Poulsen can get investors to back his technology and take it to market.

The system starts with a liquid molecule made up of carbonhydrogen, and nitrogen. When hit by sunlight, the molecule draws in the sun’s energy and holds it until a catalyst triggers its release as heat. The researchers spent almost a decade and $2.5 million to create a specialized storage unit, which Moth-Poulsen, a 40-year-old professor in the department of chemistry and chemical engineering, says has the stability to outlast the 5-to 10-year life span of typical lithium-ion batteries on the market today.

relates to An Energy Breakthrough Could Store Solar Power for Decades
Moth-Poulsen with a small sample of his molecular solar thermal liquid. PHOTOGRAPHER: OSCAR MATTSSON/CHALMERS UNIVERSITY OF TECHNOLOGY

The most advanced potential commercial use the team developed is a transparent coating that can be applied to home windows, a moving vehicle, or even clothing. The coating collects solar energy and releases heat, reducing electricity required for heating spaces and curbing carbon emissions. Moth-Poulsen is coating an entire building on campus to showcase the technology. The ideal use in the early going, he says, is in relatively small spaces. “This could be heating of electrical vehicles or in houses.”

A big unknown is whether the system can produce electricity. While Moth-Poulsen believes the potential exists, his team is focused for now on heating. His research group is one of about 15 trying to tackle climate change with molecular thermal solar systems. Part of what motivates them is the Paris Agreement, which commits signatories to pursue efforts to limit global warming to 1.5C (2.7F).

Moth-Poulsen plans to spin off a company that would advance the technology and says he’s in talks with venture capital investors. The storage unit could be commercially available in as little as six years and the coating in three, pending the $5 million of additional funding he estimates will be needed to bring the coating to market. In May he won the Arnbergska Prize from the Royal Swedish Academy of Sciences for his solar energy projects.

The professor doesn’t have precise cost estimates for the technology but is aware that it will need to be affordable. One cost advantage is that the system doesn’t need any rare or expensive elements. Jeffrey Grossman, a professor in the department of materials science and engineering at the Massachusetts Institute of Technology who’s also developing energy storage molecules, calls the Chalmers University team’s work “crucial if we want to see this energy conversion storage approach commercialized.”

Peter Schossig, who runs the Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany, says he wants to help turn the Swedish team’s research into a product. But, he says, “There’s still a ways to go.”

Nobel Prize Winner Says Battery Recycling Key to Meeting Electric Car Demand

Akira Yoshino holds a model of a lithium-ion battery during a press conference on Oct. 9.
Akira Yoshino holds a model of a lithium-ion battery during a press conference on Oct. 9. Photographer: Tomohiro Ohsumi/Getty Images

Recycling batteries is the key to securing enough raw materials to power the surge in electric vehicle demand, according to a winner of the Nobel Prize in Chemistry.

“The point is whether EV batteries can be recycled,” said Akira Yoshino, a Japanese chemist who was awarded the prize with two others for their pioneering work on modern lithium-ion batteries that are used in smartphones to cars. “The cost should pay off if all of waste car batteries in Japan are collected and processed.”

The world’s transition to battery power, including electric vehicles, is set to boost demand for commodities from copper to nickel and cobalt. But there’s also concerns that miners won’t be able to expand raw material supply fast enough, and any shortfall will offer bigger opportunities for recycling. China has already emerged as a leader in the field.

Solar, Wind

The next mission for the industry is to increase the amount of solar and wind energy that can be stored in batteries used in cars, Yoshino, 71, said in an interview on Wednesday.

After around 2025, when Yoshino predicts EVs will make up about 15% of new car sales worldwide, the auto industry will likely see electrification incorporated into car-sharing and self-driving vehicles, he said. “The ideal style for the future is people don’t own a car and a self-driving vehicle is coming whenever anyone wants to use the service.”

Read more: China is already winning the next great race in electric cars

Yoshino, of Asahi Kasei Corp. and Meijo University, was awarded the prize alongside M. Stanley Whittingham, a British-American professor at the State University of New York at Binghamton and German-born John Goodenough, professor at the University of Texas.

Whittingham, 77, first discovered in the 1970s it was possible to shuttle lithium atoms from one electrode to another at room temperature, facilitating recharge-ability. When the battery material — lithium — proved prone to catching fire, it took the work of Goodenough, 97, to make it into a usable device. Yoshino’s research on ensuring chemical stability crowned the current lithium-ion battery.

Lithium-ion batteries have “revolutionized our lives” since they first entered the market in 1991, the Royal Swedish Academy of Sciences said in a statement on Wednesday. “They have laid the foundation of a wireless, fossil fuel-free society, and are of the greatest benefit to humankind.” SOURCE