US: Renewables to rise above coal and nuclear says FERC

US renewable

Image credit: Stock

Renewables are estimated to add nearly 50,000 MW, being more than a quarter of the total capacity according to a review by the SUN DAY Campaign of data, issued last week by the Federal Energy Regulatory Commission (FERC).

According to the report, the mix of renewable energy sources (i.e., biomass, geothermal, hydropower, solar, wind) provided 57.26% of new U.S. electrical generating capacity added in 2019 – swamping that provided by coal, natural gas, oil, and nuclear power combined

FERC’s latest monthly “Energy Infrastructure Update” report (with data through to December 31, 2019) reveals renewable sources (i.e. biomass, geothermal, hydropower, solar, wind) accounted for 11,857 megawatts (MW) of new generating capacity by the end of the year. That is a third more (33.97%) more than that of natural gas (8,557 MW), nuclear (155 MW), oil (77 MW), and coal (62 MW) combined.

Renewables have now also surpassed 22% (i.e., 22.06%) of the US’ total available installed generating capacity – further expanding their lead over coal capacity (20.89%). Among renewables, wind can boast the largest installed electrical generating capacity – 8.51% of the U.S. total, followed by hydropower (8.41%), solar (3.49%) [2], biomass (1.33%), and geothermal (0.32%). Thus, wind and solar combined now account for 12.0% of the nation’s electrical generating capacity.

Moreover, the FERC foresees renewables dramatically expanding their lead over fossil fuels and nuclear power in terms of new capacity additions during the coming three years (i.e., by December 31, 2022). Net generating capacity additions (i.e., “proposed additions under construction” minus “proposed retirements”) for renewable sources total 48,254 MW: wind – 26,403 MW, solar – 19,973 MW, hydropower – 1,460 MW, biomass – 240 MW, and geothermal – 178 MW.

By comparison, net additions for natural gas total 21,090 MW while the installed capacities for coal, nuclear, and oil are projected to drop by 18,857 MW, 3,391 MW, and 3,085 MW respectively. In fact, FERC reports no new coal capacity in the pipeline over the next three years.

Thus, while net new renewable energy capacity is projected to be nearly 50,000 MW greater within three years, that of fossil fuels and nuclear power combined will decline by over 4,200 MW. Between now and the end of 2022, new wind capacity alone will be greater than that of natural gas while that of wind and solar combined will more than double new gas capacity.

Moreover, if FERC’s data prove correct, then by the end of 2022, renewable sources will account for more than a quarter (25.16%) of the nation’s total available installed generating capacity while coal will drop to 18.63% and that of nuclear and oil will decrease to 8.29% and 2.95% respectively. Natural gas will increase its share — but only slightly – from 44.67% today to 44.78%.

As the Executive Director of the SUN DAY Campaign, I believed that the rapid growth of renewables and corresponding drop in electrical production by coal and oil in 2019 provides a glimmer of hope for slowing down the pace of climate change. In addition, renewables’ continued expansion in the near future – as forecast by FERC – suggests that with supportive governmental policies, these technologies could provide an even greater share of total U.S. electrical generation. SOURCE

Statistics presented in this article can be found here. Read the full FERC report.

Ontario can phase out nuclear and avoid increased carbon emissions

New research shows Ontario doesn’t really need nuclear energy, and its absence would not have an impact on emissions in the province’s energy sector. (Ferdinand Stohr/Unsplash)

As wind and solar energy have become cheaper, they’ve become a more prominent and important way to generate clean electricity in most parts of the world.

The Ontario government, on the other hand, is cancelling renewable energy projects at a reported cost of at least $230 million while reinforcing the province’s reliance on nuclear power via expensive reactor refurbishment plans.

As researchers who have examined the economics of electricity generation in Ontario and elsewhere, we argue that this decision is wasteful and ill-advised, and the unnecessary cost differential will rise further in the future.

One concern about renewables has been the intermittency of these energy sources. But studies have shown it’s feasible to have an all-renewable electric grid.

Read more: How to have an all-renewable electric grid

These feasibility studies, however, are always location specific. In that spirit, we have carried out detailed modelling and found that it’s possible to meet Ontario’s electricity demands throughout the year with just a combination of renewables, including hydropower, and storing electricity in batteries.

We also found that dealing with the intermittency of wind and solar energy by adding batteries would be more economical than refurbishing nuclear plants in the foreseeable future, well before the current refurbishment projects are completed.

That’s because of the expected decline in the cost of batteries used to store the electricity during the hours when the wind is blowing or the sun is shining in order to supply electricity during the periods when they aren’t. The cost of different kinds of battery technologies, such as lithium-ion or flow batteries, have come down rapidly in recent years.


To explore the relative economics of nuclear and renewable energy, we constructed a very simple model that optimized the total cost of meeting the electricity demand in Ontario for each hour of the year.

We used what’s known in physics as a toy model. It’s not intended to be sufficiently accurate to reproduce reality in detail, but to capture the basic and important elements of the system being studied. Our model is not meant to actually calculate the cost of supplying electricity, but only to compare the relative costs of different options, with the condition that no fossil fuels be used.

Using a software program called pypsa, we started with an example that modelled a fully renewable electricity system for European countries, and then modified it significantly. Our target was Ontario’s hourly electricity demand in 2017, taken from the province’s Independent Electricity System Operator, known as the IESO.

A hydro tower is shown in Toronto. THE CANADIAN PRESS/Darren Calabrese 

We met this demand in two ways — batteries and refurbished nuclear plants. Both cases incorporated solar energy, wind energy and hydro power from existing dams. The base costs of solar and wind were taken from a November 2018 report by the Wall Street advisory firm Lazard; the prices have since declined.

For simplicity, we assumed that the variable costs of all these technologies were zero. This actually favours the nuclear scenarios because it ignores the cost of uranium fuel and radioactive waste disposal.

The availability factors for every hour of the year for the theoretical solar and wind generators were also based on data from the IESO on actual production of solar and wind energy in Ontario in 2017.

The maximum power available from large hydropower dams during any hour of the year was assumed to be less than 85 per cent of the installed capacity within Ontario of 9,065 megawatts; this is a conservative assumption since the province could easily import more hydropower from neighbouring Québec.

We ran a large number of scenarios with multiple cost and other assumptions and derived fairly robust results.

Essential results

In all scenarios, the bulk of the demand was met by solar and wind power, with a lower fraction met by hydropower. Even in the scenarios with no batteries, less than 20 per cent of the electricity demand was met by nuclear power.

Second, it would be cheaper to reduce this even further. Because of safety and other operational reasons, it’s a bad idea to change the outputs of nuclear plants quickly. Traditionally, reactor outputs have been held steady.

But if, for argument’s sake, we allow the outputs of nuclear reactors to go up and down as fast as needed by the grid, then our model predicts that nuclear power plants would be used even less. If nuclear power plants outputs are held steady, then they would supply more electricity, but the cost to consumers would also be higher.

Finally, and perhaps most consequentially, if the costs of batteries decline from current levels to those projected for 2025, then the cost of supplying electricity using a combination of renewables and battery storage would become cheaper than doing the same using nuclear power.

The cost of meeting the electricity needs for the province could be further reduced if the availability of hydropower is increased.

The Jean-Lesage hydro electric dam generates power along the Manicouagan River north of Baie-Comeau, Que. THE CANADIAN PRESS/Jacques Boissinot 

Our choice of 2025 for the projection year, incidentally, is guided by the fact that the current use of modern renewables in Ontario is low, and there will be no need for batteries to store electricity until there is a dramatic increase in the wind or solar power projects constructed. The levels of renewables that will require storage are unlikely to be reached before 2025.

In summary, our results show that for reasonable assumptions about future battery costs and the current price tag for solar and wind power, scenarios involving nuclear power are more than 20 per cent higher than the cheapest scenario involving only batteries, solar, wind and the current hydropower capacity.

If an extra 2,000 megawatts of hydropower capacity were to be available, scenarios involving nuclear power would be over 30 per cent more expensive.

That means, simply put, that nuclear power isn’t needed to meet Ontario’s electricity needs. And the absence of nuclear power won’t have any impact on emissions in Ontario’s energy sector. SOURCE